5 research outputs found

    ExpEdit: a webserver to explore human RNA editing in RNA-Seq experiments.

    Get PDF
    Abstract Summary: ExpEdit is a web application for assessing RNA editing in human at known or user-specified sites supported by transcript data obtained by RNA-Seq experiments. Mapping data (in SAM/BAM format) or directly sequence reads [in FASTQ/short read archive (SRA) format] can be provided as input to carry out a comparative analysis against a large collection of known editing sites collected in DARNED database as well as other user-provided potentially edited positions. Results are shown as dynamic tables containing University of California, Santa Cruz (UCSC) links for a quick examination of the genomic context. Availability: ExpEdit is freely available on the web at http://www.caspur.it/ExpEdit/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    The MEPS server for identifying protein conformational epitopes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most interesting problems in molecular immunology is epitope mapping, i.e. the identification of the regions of interaction between an antigen and an antibody. The solution to this problem, even if approximate, would help in designing experiments to precisely map the residues involved in the interaction and could be instrumental both in designing peptides able to mimic the interacting surface of the antigen and in understanding where immunologically important regions are located in its three-dimensional structure. From an experimental point of view, both genetically encoded and chemically synthesised peptide libraries can be used to identify sequences recognized by a given antibody. The problem then arises of which region of a folded protein the selected peptides correspond to.</p> <p>Results</p> <p>We have developed a method able to find the surface region of a protein that can be effectively mimicked by a peptide, given the structure of the protein and the maximum number of side chains deemed to be required for recognition. The method is implemented as a publicly available server. It can also find and report all peptide sequences of a specified length that can mimic the surface of a given protein and store them in a database.</p> <p>The immediate application of the server is the mapping of antibody epitopes, however the system is sufficiently flexible for allowing other questions to be asked, for example one can compare the peptides representing the surface of two proteins known to interact with the same macromolecule to find which is the most likely interacting region.</p> <p>Conclusion</p> <p>We believe that the MEPS server, available at <url>http://www.caspur.it/meps</url>, will be a useful tool for immunologists and structural and computational biologists. We plan to use it ourselves to implement a database of "surface mimicking peptides" for all proteins of known structure and proteins that can be reliably modelled by comparative modelling.</p

    An automatic method for identifying surface proteins in bacteria: SLEP

    Get PDF
    Background: Bacterial infections represent a global health challenge. The identification of novel antibacterial targets for both therapy and vaccination is needed on a constant basis because resistance continues to spread worldwide at an alarming rate. Even infections that were once easy to treat are becoming difficult or, in some cases, impossible to cure. Ideal targets for both therapy and vaccination are bacterial proteins exposed on the surface of the organism, which are often involved in host-pathogen interaction. Their identification can greatly benefit from technologies such as bioinformatics, proteomics and DNA microarrays. Results: Here we describe a pipeline named SLEP (Surface Localization Extracellular Proteins), based on an automated optimal combination and sequence of usage of reliable available tools for the computational identification of the surfome, i.e. of the subset of proteins exposed on the surface of a bacterial cell. Conclusions: The tool not only simplifies the usage of these methods, but it also improves the results by selecting the specifying order and combination of the instruments. The tool is freely available at http://www.caspur.it/slep
    corecore